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Abstract 

The complexity of land use and land cover change (LULC) models is often attributed to spatial 

heterogeneity of the phenomena they try to emulate. The associated outcome uncertainty stems 

from a combination of model unknowns. Contrarily to the widely shared consensus on the 

importance of evaluating outcome uncertainty, little attention has been given to the role a well-

structured spatially-explicit sensitivity analysis (SSA) of LULC models can play in corroborating 

model results. In this paper, I propose a methodology for SSA that employs sensitivity indices 

(SI), which decompose outcome uncertainty and allocate it to various combinations of inputs. 

Using an agent-based model of residential development, I explore the utility of the methodology 

in explaining the uncertainty of simulated land use change. Model sensitivity is analyzed using 

two approaches. The first is spatially inexplicit in that it applies SI to scalar outputs, where 

outcome land use maps are lumped into spatial statistics. The second approach, which is spatially 

explicit, employs the maps directly in SI calculations. It generates sensitivity maps that allow for 

identifying regions of factor influence, that is, areas where a particular input contributes most to 

the clusters of residential development uncertainty. I demonstrate that these two approaches are 

complementary, but, at the same time, can lead to different decisions regarding input factor 

prioritization.  
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1 Introduction 

Land use and land cover change (LULC) is one of the most compelling manifestations of global 

anthropogenic impacts on natural environment (Liu et al., 2007, Gutman et al., 2004, Turner et 

al., 2007). Although the direct and indirect drivers of LULC have already been identified and 

described (Rindfuss et al., 2008, Verburg et al., 2004), there is still limited understanding of the 

linkages among these drivers and the causality chains, which jointly constitute LULC processes 

(Verburg, 2006, Claessens et al., 2009). To better understand these trajectories, many complex 

spatially-explicit LULC models have been developed and employed (Agarwal et al., 2002, Milne 

et al., 2009, Verburg et al., 2006). Many scholars argue, however, that the models are of limited 

value if their epistemological and ontological uncertainties are not explicitly accounted for and 

communicated (Turner et al., 2007, Messina et al., 2008, Ascough Ii et al., 2008, Pontius and 

Neeti, 2010, Visser et al., 2006, Warmink et al., 2010). While the quantifiable probabilistic 

uncertainties are frequently acknowledged in the reported research, they oftentimes are 

inadequately addressed, partially due to the lack of methods and tools that could decompose the 

uncertainty estimates and distribute them among model variables and functional relationships. 

This procedure of model outcome decomposition is of particular value if we want to understand 

the relative influence of the interconnected dynamic drivers on LULC.   

This paper proposes one such procedure of LULC model outcome decomposition, in 

which we employ variance-based global sensitivity analysis (Saltelli et al., 2008, Lilburne and 

Tarantola, 2009) to spatially heterogeneous outputs. In particular, I present a framework that 

quantifies input sensitivity maps that augment model output analysis. I demonstrate the utility of 

this framework using an agent-based model of residential development – ABM. The reported 

ABM is a representation of a complex LULC system, and it incorporates heterogeneous land 
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actors that convert undeveloped land to urban land use. The consequences of their individual 

decisions feed back into the simulated landscape. These environmental changes affect future 

agent decisions constituting nonlinear and path dependent phenomena.  

I define a comprehensive uncertainty and sensitivity analysis (U-SA) as a systematic 

quantitative and qualitative approach to estimating model outcome variation and apportioning it 

to different model components including parameters, variables, and functions (Saltelli et al., 

2008, Lilburne and Tarantola, 2009, Makler-Pick et al., 2011). I argue that uncertainty analysis 

and sensitivity analysis should be applied in tandem. First, uncertainty analysis is employed to 

quantify outcome variability given model input uncertainties and to generate a distribution of 

values of the dependent variable like, for example, a selected land use fragmentation statistic 

(FS). Sensitivity analysis (SA) is then applied to the quantified output variability to investigate 

the influence of inputs on model results. For instance, the variance of FS can be partitioned into 

sensitivity measures that represent a fractional contribution of the inputs to the uncertainty of FS 

values. 

The number of studies that employ comprehensive U-SA in environmental modeling 

increased rapidly over the last decade. Examples include exploring ecosystem vulnerability to 

climate change (Chu-Agor et al., 2011), parameterizing watershed and hydrological models 

(Makler-Pick et al., 2011, Yang, 2011), calibrating soil and crop models (Varella et al., 2010), 

evaluating species interaction and community stability (Hosack et al., 2009), and simulating 

aquatic ecosystems (Melbourne-Thomas et al., 2011, Estrada and Diaz, 2010). The utilization of 

U-SA in geographical modeling has also been steadily growing. For instance, spatial U-SA has 

been applied in multicriteria evaluation and spatial decision support (Feick and Hall, 2004, 

Gomez-Delgado and Tarantola, 2006, Chen et al., 2010), GIS-based flood forecasting (Crosetto 
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and Tarantola, 2001), conservation reserve delineation (Pantus et al., 2008, Rae et al., 2007, 

Humphries et al., 2010), managing invasive species (Roura-Pascual et al., 2010), coastal oil 

spills (Li et al., 2000), groundwater dynamics (Dixon, 2005, Lilburne and Tarantola, 2009), and 

agent-based modeling of land use change (Ligmann-Zielinska and Sun, 2010, Ligmann-Zielinska 

and Jankowski, 2010) to name just a few. While these efforts represent considerable 

advancements in studying uncertainties of spatial models, they either apply a rudimentary one-

parameter-at-a-time sensitivity analysis (Chen et al., 2010, Rae et al., 2007), or use an aspatial 

representation of model results, in which maps are aggregated to one scalar measure like a best 

composite score among spatial alternatives (Gomez-Delgado and Tarantola, 2006), total nitrate 

concentration at a site (Lilburne and Tarantola, 2009), or a selected fragmentation statistic of 

land use patterns (Ligmann-Zielinska and Jankowski, 2010).  

In this article, the focus of LULC modeling is directed to spatial representations of 

comprehensive SA. The report on the proposed framework proceeds in five sections. Following 

this introduction, a particular approach to SA, called variance-based global sensitivity analysis, is 

discussed. What follows is a description of the spatial SA framework. The next section outlines 

the ABM and the computational experiments. Subsequently the analysis of results is presented, 

first by looking at the uncertainty of the simulated LULC patterns, and then model factor 

sensitivities. Sensitivity maps of LULC patterns are further contrasted with selected scalar 

measures (spatial statistics) of development patterns. The final section summarizes the findings 

and concludes the article. 
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2 Variance-Based Global Sensitivity Analysis 

SA is frequently perceived as an optional and onerous step in modeling, which can be omitted 

without a substantial loss of information. However, SA offers many benefits that could improve 

the LULC modeling. Not only does SA improve model validity by recognizing its critical 

components, but it also provides means of model simplification (factor reduction), which is 

especially valuable when simulating complex LULC systems. A common approach to SA 

involves modifying the value of one input (while keeping all the other factors constant) and 

observing the effects of this change on model result. This popular SA method is often referred to 

as one-parameter-at-a-time (OAT) approach. Unfortunately, OAT has many serious limitations 

that diminish its analytical value (Saltelli and Annoni, 2010). In the context of LULC modeling, 

three are especially worth mentioning. First, the choice of which parameter, where, and by what 

amount to change is problematic. Even if the modeler has extensive knowledge of the system 

under study, the magnitude of direct and indirect drivers may be hard to determine. Second, OAT 

assumes a linear relationship between inputs and outputs. For example, if a LULC modeler 

increases the value of the road density input a few times and observes an increase in output 

residential land compactness, she may conclude that, in her model, the compactness is positively 

correlated with road density. However, the relationship may be more complicated if road density 

is analyzed in combination with noise or air pollution from transportation. It is therefore crucial 

to incorporate factor interaction effects in U-SA of LULC models. Third, OAT is qualitative in 

nature – it does not compute any fractional contribution of a particular input factor to outcome 

uncertainty.  
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Global SA (GSA) has been proposed as an alternative to OAT (Saltelli et al., 2000). 

Unlike OAT, GSA is based upon perturbations of the entire parameter space, where input factors 

are examined both individually and in combinations (Campolongo et al., 2000). Different 

methods of performing GSA in spatial modeling have been developed. Lilburne and Tarantola 

(2009) categorized the methods based on their model dependence, computational efficiency, and 

algorithmic complexity. For example, regression-based approaches assume that the underlying 

model behaves linearly and, consequently, are of limited use for studying dynamic causality 

(Millington et al., 2007, Mac Nally, 1996). Other common methods, like the importance 

measures based on Latin Hypercube Sampling (Helton and Davis, 2003, Xu et al., 2005), require 

well-defined stratification of inputs, a very large number of model executions, and, oftentimes, 

do not estimate higher-order effects that account for factor interactions (Lilburne and Tarantola, 

2009, Saltelli et al., 2004, Helton and Davis, 2003).  Here, I propose to employ a model 

independent variance-based GSA, which obviates the assumptions of model linearity and offers 

an acceptable compromise in computational efficiency. Variance-based GSA breaks down the 

total variance (V) of model output, caused by the changes in (z) model inputs, and apportions it 

to individual factor k (Vk) and  k’s combinations with other factors i, j, …, z (Vkij…z) with an 

increasing level of dimensionality (Saisana et al., 2005, Lilburne and Tarantola, 2009, Crosetto 

and Tarantola, 2001). For example, if an ABM has the following three input factors a = resident 

developer’s preference for a selected landscape feature (e.g. distance to roads), b = developer’s 

attitude to risk-taking, c = number of parcels known to the developer agent, then the variance of 

the output (like the ranking of parcels to develop)
1
 can be decomposed as follows: 

 

                                                             
1 represented using a scalar e.g. an average shift in ranks (Saisana et al., 2005) 
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For example, Va is the variance of ranking due to the agent’s preference alone, and Vab is share in 

the total variance of parcel ranking caused by the interaction between agent’s preference and its 

risk-taking attitude. This variance is then applied to compute two sensitivity measures: first order 

(Sk) and total-effect (STk) sensitivity index for every factor k. For instance for factor a defined 

above: 
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(3) 

 

Where Y represents the ranking of parcels to develop (the dependent variable), V is Y’s 

unconditional (total) variance, Va stands for the variance of Y due to factor a alone, Sa captures 

the single impact of agent’s preference on the ranking of parcels, and STa embodies the overall 

contribution of agent’s preference (including its interactions with all other factors) to the 

variability in the ranking of parcels. VC (Saisana et al., 2005) is the conditional variance which, 

in our example, is the total contribution to the variance in ranking due to the other two factors (b 

and c) i.e. the attitude and knowledge of available land.  

 

3 Framework for Spatially-explicit Sensitivity Analysis 

Given that LULC models produce LULC maps, it is legitimate to assume that the results of U-

SA should also be presented as maps. Here, I propose to define a spatially-explicit SA as a 
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method of model evaluation in which outcome uncertainties and factor sensitivities are computed 

and mapped for every spatial entity within the area of interest (Figure 1). 

 

Insert figure1about here 

 

In addition, we can define a spatially-inexplicit SA as an approach in which scalar 

outputs (like land use fragmentation statistics), are substituted for sensitivity maps. As an 

example, consider a model of deforestation in the Amazon. In the spatially-inexplicit SA we 

could employ acreage of deforested land as the scalar model result used to evaluate outcome 

uncertainties and factor sensitivities. Conversely, we could employ spatially-explicit SA by using 

the LULC maps directly. In this case, we would generate deforestation frequency (probability) 

maps and map which factors (and where) contribute to the locational uncertainty of the potential 

deforestation regions (SA-maps).  

 

3.1 Generating SA-maps 

In this section I describe the procedure of spatially-explicit SA in LULC modeling. To 

demonstrate the concept, I assume that an ABM of residential development is employed. 

Given a set of output binary maps (undeveloped and developed land) from N number of 

LULC model realizations, we can calculate a surface depicting the overall frequency 

(proportion) of development (Fdmap): 

 

l
N

d
FmapF l

dld  ,:  (4) 
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Where, l is location (a raster cell, a vector point etc.) and d is the number of times the location 

was developed out of the total number of model executions N. The Fdmap serves as an input to Sk  

and STk  calculation, which is performed independently for each location. Based on predefined 

thresholds, we then subdivide the Fd map into three distinct regions: [a] areas where 

development is very unlikely, [b] areas where development is almost certain, and [c] areas of 

development uncertainty (Brown et al., 2005). As the next step, we select locations l for Sk and 

STk evaluation using the following conditions: 

 

( Fdl < θmax ) AND ( Fdl > θmin ) AND ( Skl > ς ) 

θmax < 1;  θmin > 0; ς > 0 

(5) 

Where Skl is the first order sensitivity index for factor k at location l, and θmax, θmin are 

development frequency thresholds. Note that the location selection conditions are applied to STkl 

in the same way as they are defined for Skl in formula (5).  

Therefore, for every location l, we check if its development frequency Fdl is larger than a 

user-defined threshold value θmin and smaller than a user-defined threshold value θmax. The θmin is 

larger than zero and θmax is smaller than one, so that the selected locations are characterized by 

spatial uncertainty
2
. Such sites comprise areas similar to the variant region (VR) as defined by 

Brown and colleagues (2005), that is, a region where locations are sometimes developed and 

sometimes not depending on the simulation run. Only when the location l passes both threshold 

values, we calculate the indices (i.e. Skl and STkl) for every factor k for location l. When drawing 

the resultant sensitivity maps, we also want to avoid visualizing values of sensitivity indices 

close to zero, which obscures the exploratory analysis. Hence, a third condition for SA-map 

                                                             
2 In extreme cases i.e. when Fdl = 0 or Fdl = 1, the total variance of development allocation at a given site is Vl(Y) = 0 

and, as per formulas (2) and (3), we cannot compute sensitivity indices. 
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rendering is introduced, i.e. Skl > ς (STkl > ς), where ς is a threshold for a minimum sensitivity 

index value. The latter term means that we map only those locations that have sufficiently high 

sensitivities for a particular factor. Consequently, given the conditions in formula (5), the number 

of Skl  and STkl indices to display and analyze will be usually much smaller than the total number 

of locations (cells, points etc.) considered by the model and the spatial sensitivity analysis will be 

confined to relatively high uncertainty areas.   

Below I provide an example to demonstrate the procedure. Suppose that a LULC 

produced a development frequency map (Fdmap) as depicted in Figure 2(a). Assuming θmin = .25, 

θmax = .85, we partition the Fdmap into two regions (Figure 2(b)): approximately certain 

(depicted with E) and relatively uncertain (depicted with a fraction value Fdl). We then calculate 

sensitivities for all non-E locations (Figure 2(c)). Finally assuming ς = .05, that is, excluding 

locations with Skl  <= .05 for factor k, we obtain an SA-map as shown in Figure 2(d). 

 

Insert figure2 about here 

 

Note that the SA-maps (separate for the first order and the total effect indices) serve as 

synthesized U-SA visualization. The reclassified development frequency map is first used to 

delineate the VR. Then, the sensitivity hot and cold spots are identified within that region. We 

have to acknowledge, however, that in this approach the heterogeneity of spatial uncertainty is 

lost due to the arbitrariness of θmin and θmax values. Thus, uncertainty is confined only to mapping 

out the variant regions. As a consequence, the proposed U-SA framework assumes that the non-

variant regions are insensitive to the uncertain model inputs.  
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In summary, the spatial SA of LULC models uses the simulated land use maps directly as 

input to variance decomposition. This approach to spatial SA is different from the one described 

by Lilburne and Tarantola (2009), in which they use scalar outputs in place of maps. It is also 

distinct from the pioneering procedure described by Marrel et al. (2011), which, to the author’s 

knowledge, is the only reported attempt to compute and analyze spatially-explicit sensitivities. 

The method proposed by Marrel and colleagues (2011) employs Gaussian process (Gp) 

metamodeling to emulate a model of groundwater contamination with radioactive waste. Instead 

of using the contamination diffusion model directly, they employ the Gp surrogate to calculate 

SA-maps. The Gp emulator has one important advantage over the exact-model SA, namely, 

computational efficiency (Marrel et al., 2011, Saltelli et al., 2008). In particular, a much smaller 

number of model executions is needed to converge to an acceptable solution. At the same time, it 

is important to recognize two notable shortcomings of metamodeling approaches. Firstly, since a 

metamodel is a mathematical approximation of the underlying more complex model, there is 

always a risk of inaccurate representation (Saltelli et al., 2008). Secondly, especially in the 

context of ABM, metamodeling may be envisioned as a less transparent simulation approach, 

that is, an efficient but difficult to interpret substitute.  

 

4 Agent-Based Model and Simulation Setup 

The following two sections outline the ABM of residential development and the computational 

procedure used to demonstrate the spatial SA framework.  

Figure 3 depicts the diagram of the model. A given agent (g), who represents a residential 

developer, starts from selecting a random parcel p (a vector polygon) out of a pool of 

developable sites. This selection triggers a landscape retrieval procedure, which reads values of 
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the underlying landscape characteristics (represented as raster layers) like land value of p (LVp), 

landscape natural (scenic) beauty of p (NBp), and distance to roads called accessibility of parcel p 

(ACp). These characteristics serve as criteria used in g’s decision making about land conversion 

from undeveloped to residential. It is further assumed that the decision making is affected by the 

density of development in the surrounding environment of p (Dp). Hence, a second step of 

landscape retrieval calculates the density of development in the adjacent neighborhood: 

 p

n

np NnsdevD   ;/)(  (6) 

Where Np is the set of parcels that neighbor parcel p, n is its neighboring parcel, s is the number 

of parcels in Np, and devn = 1 when n is developed and zero otherwise. 

 

Insert figure3 about here 

 

Agent’s decision making is driven by its normalized weights (preferences) for the three selected 

landscape characteristics (WLVg, WNBg, and WACg, respectively). These weights are used to 

compute the utility (score) of a selected parcel p (Spg), which is distinct for every agent g. The 

utility is calculated using the weighted summation aggregation function. Agent g is also 

equipped with a preference for development density called a neighborhood effect (Eg), scaled to 

a range of [-1,1]. When Eg is positive, the agent wants to settle close to other agents. When Eg is 

negative, the agent avoids other agents in the neighborhood. The rationale behind a different 

treatment of the three preferences and the Eg is as follows. While the retrieved landscape attribute 

values are only indirectly affected by the surrounding values (through spatial autocorrelation), 

the Eg represents a spatially explicit proximal agent-agent interaction. In other words, WLVg, 

WNBg, and WACg, are aspatial weights used in utility calculation (i.e. they are uniform over the 



14 

 

entire study area) , whereas Eg contributes to a spatial weight (Feick and Hall, 2004) referred to 

as WEpg (neighborhood effect weight of agent g for parcel p) independently applied to the initial 

parcel utility: 

 

gppg EDWE *  (7) 

pgpgpgpg WESSU *
 

(8) 

 

Hence, the initial p’s utility for g i.e. Spg is post-hoc adjusted with the neighborhood effect 

weight to obtain the final utility – Upg (Rinner and Heppleston, 2006). Upg is further compared to 

the score of the best parcel so far evaluated (this score is initially set to zero). If, for agent g, the 

utility of p is higher than the best parcel utility, its best parcel is set to p.  

The procedure of utility calculation is repeated for a sample of locations. Once the 

parcels are evaluated, the best scoring parcel is developed by the agent (Figure 3). This 

development feeds back to the landscape layers. Two feedbacks are employed as described in 

Ligmann-Zielinska and Sun (2010): land value increase (LVI) and natural beauty decrease 

(NBD). Both feedbacks can be applied to a variable size neighborhood N.  

 

 

4.1 Computational Experiments 

To control for factor distribution and hence facilitate the interpretation of results, I employed 

hypothetical data. Figure 4 shows the three landscape characteristics used in experimentation.  

 

Insert figure4 about here 
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An additional discrete object (vector) layer was generated by partitioning the extent into 3600 

equal-size square polygons. This partitioning of space introduces the decision-making layer – 

a parcel layer – which is separate from the landscape layers (continuous rasters) in figure 4. 

Therefore, the agents do not make decisions on changing the land use of individual pixels but 

rather, as is the case in real world residential decision-making, decide on the development of the 

whole parcel lot. 

 Nine heterogeneous developer agents are generated during ABM initialization. Each 

agent develops one parcel per time step by randomly sampling 6% of the parcels (216 sites). The 

agent has no preference for any particular parcel. Instead, they select the top scoring parcel from 

the 216 sites included in the sample. The model runs for 40 time steps. As a result, at the end of 

the simulation, 10% of the landscape becomes developed, which amounts to 360 parcels at the 

end of model execution. 

The ABM is equipped with seven input parameters described in the previous section: 

three weights per agent (WLVg, WNBg, WACg), three agent-environment feedback mechanisms 

(N, LVI, NBD), and agent-agent interaction (Eg). The weights are further combined for all agents 

to form factor groups (Saltelli et al., 2004) i.e. WLV, WNB, WAC, and E, whereas the three 

feedbacks are single model-level factors. A factor group is a set of a particular type of factors 

(e.g. land value weights) assembled for the whole collection of agents. Hence, each factor group 

in the ABM is composed of nine single factors. Factor grouping allows for parameter reduction 

and, consequently, decreases the number of model executions. In the following sections, both 

single factors and factor groups used in the ABM are referred to as ‘factors’.  
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The probability density functions for input factors are summarized in Table 1. I used 

SimLab open source software (http://simlab.jrc.ec.europa.eu/) to generate samples and calculate 

sensitivity indices. I also employed the extended FAST on groups sampling method to generate 

factor samples and produce a total of 19275 model realizations. This sampling method puts 

together subsets of factors and applies the ‘extended Fourier Amplitude Sensitivity Test’ (FAST) 

method of sensitivity analysis, in which a multidimensional integral over all the uncertain model 

inputs is transformed to a one-dimensional integral used in outcome decomposition (Saltelli et 

al., 2004, Gomez-Delgado and Tarantola, 2006).  

The ABM was implemented in Python programming language (http://www.python.org/) 

and is available from the model library on the OpenABM website (http://www.openabm.org/). 

Insert table1 about here 

 

4.2 U-SA Setup for the Demonstration Study 

Individual spatial realizations of development patterns, that is, the final binary maps with 

developed and undeveloped locations, were first summarized by calculating the Fd map depicted 

in Figure 5. Given the gradient of change in the map, I assumed that the VR would be delineated 

with θmin = 20% and θmax = 90%. All sites (parcel centroids) that are bounded by these thresholds 

are grey in Figure 5. To compare the Fd map with an aggregate measure of development I 

employed the directional distribution spatial statistics, which is also called a standard deviational 

ellipse (de Smith et al., 2009). In particular, I used two measures of the directional distribution: 

ellipse area (DDA), and ellipse eccentricity (DDE). The former serves as a proxy for land 

development dispersion, whereas the latter quantifies development elongation, and, hence, 

unevenness of spatial distribution.  

http://simlab.jrc.ec.europa.eu/
http://www.python.org/
http://www.openabm.org/
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5 Results and Discussion 

The DDA and DDE statistics are summarized in Figure 5-top and examples of the ellipses are 

mapped Figure 6. Observe that both statistics exhibit a substantial amount of variability (DDE: 

CV=.23 and DDA: CV=.18). A simple visual evaluation of DDE and DDA with the three 

landscape layers (Figures 4 and 6), suggests that DDA is the smallest when the majority of 

agents prefer LV over the other two attributes, whereas the DDE is the largest (most elongated) 

when a high importance is assigned to AC and NB, so that an area of a large marginal decrease in 

NB is selected. Moreover, DDA is the largest and DDE is the smallest when (for the majority of 

agents) NB plays the most important role in deciding where to develop. However, as described in 

the next section, these relationships prove to be more complex when sensitivity analysis is 

employed. In sum, Figure 5 summarizes the uncertainty associated with the development using 

two scalars (DDA and DDE), and one Fd map with the variant region sketched out. 

 

Insert figure5 about here 

Insert figure6 about here 

 

5.1 Spatially-inexplicit and Spatially-explicit Sensitivity Analysis 

Published research demonstrates that the Sk  and STk  indices are good composite indicators for a 

plethora of  model performance characteristics (Saltelli et al., 2004, Tarantola et al., 2002). 

Below I suggest questions that could be addressed with spatial SA using the ABM of LULC as 
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an example. The interpretation of SA results is based on the pie charts shown in Figure 7 and 

maps shown in Figure 8. 

 

Insert figure7 about here 

Insert figure8 about here 

 

The major goal of SA is to identify those components of a particular model that affect its 

outcome uncertainty. In this context, we can therefore pose the following questions: Which 

model factors influence outcome uncertainty the most? Which of them are spatially 

heterogeneous? 

Figure 7 depicts variance decomposition of the spatially-indirect (aggregate) 

representations of the LULC patterns. Both DDE and DDA show similar relative sensitivities. 

When analyzed singly (Figure 7 top), E, WLV, WNB, and WAC affect the dispersion of the ellipse 

statistics the most. The pronounced impact of E is not surprising since this factor can have a very 

different influence on development when set to a negative versus positive value. The negative 

value forces the agents to locate away from each other, while the positive value brings agents 

together, leading to a more compact development. The influence of weights on the uncertainty of 

DDE and DDA is also understandable. As seen in figure 4, all three layers are spatially distinct, 

providing quite different land use configurations for extreme preference values. The WNB is 

especially influential since the NB layer is the only one that exhibits patchiness leading to 

diverging land configurations (the other two layers are spatially symmetric). What is most 

intriguing, however, is the fact that the first order indices account only for a third of the 
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unconditional output variance (38% for DDE and 31% for DDA, respectively). The remainder of 

the variance must be attributed to factor interactions. 

The spatial distribution of the first order indices is rather uninteresting. Most of the 

factors exhibit a nearly random pattern. An exception is a map of the interaction effects (Figure 

8-top), which is characterized by a considerable spatial heterogeneity with a few distinct clusters. 

I could therefore conclude that, when the factors of this model are taken singly, an aggregate 

representation of patterning (like the directional distribution statistics) is sufficient to evaluate 

factor’s individual influence. In this case, mapping the Sk indices is unnecessary.    

Some factors are characterized by nonlinear behavior, depending on the way the results 

are summarized. The N factor has a particularly interesting nature of sensitivity (Figures 6-

bottom and 7-bottom). Its role in the aggregate pattern measures (DDE and DDA) is rather 

minimal. When its total effect is considered, it contributes only 7 to 10% to the variance of the 

ellipse measures. However, when mapped for individual locations, it proves to be more 

influential. Not only is it higher (i.e. explains from 10 to 20% of the total variance mapped for 

each location in VR) but it has, in general, higher values when compared to the other maps of 

STk, especially to the map of E.  

Given that the majority of the output variance cannot be explained by individual factors 

alone, we should concentrate on analyzing the STk indices. The following questions can be 

asked: Which combinations of factors influence the uncertainty of development locations, 

suggesting that LULC change is driven by a myriad of interconnected forces? Are there any 

regions where factors interact with each other? 

As mentioned above, over 60% of outcome uncertainty, measured using the directional 

distribution, can be attributed to factor interactivity (the grey fractions of the pies in Figure 7). 
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We can therefore infer that the model is highly interactive in terms of its variables. This factor 

interactivity can be better assessed when mapped against the VR (Figure 8-top). Factor 

interactions for all sites in the VR contribute 46-61% to the total variance, which further 

confirms that the model is functionally complex. Moreover, we can observe that factor 

interactions concentrate (cluster) in locations with large differences among the three landscape 

layers (Figure 4).  

Based on the formulation of the three feedback factors (LVI, NBD, and N) we can 

hypothesize that their influence on the variability of land use configuration will be more 

pronounced when the interactions are investigated (Figure 7 bottom). Indeed, for both DDE and 

DDA, all three feedbacks contribute to variance in around 10% each (the STk pies), suggesting 

that a substantial part of this ABM behavior is fairly complex. Consequently, it would be 

incorrect to evaluate this model by applying OAT SA, which is so common in land use research. 

Moreover, if we finished the analysis at the first order level (for example by employing 

regression in place of variance decomposition) we would erroneously assume that LVI, NBD, and 

N have a negligible impact on output variance. Only if we employ STk calculations, can we 

determine the influence of the higher-order (coupling) factors. Finally, out of all maps of STk, the 

spatial maps for feedbacks are the least spatially dependent. Overall, they contribute to 

development uncertainty, but their influence is spread roughly evenly over the whole area.  

We can also analyze spatial distributions of sensitivities of the selected factors one-at-a-

time, focusing on locations where LULC is the most uncertain due to a given factor. We would 

then consider the following questions: Where are the sensitivity hot (cold) spots of factor k 

located? How do they compare to hot (cold) spots of the other factors? 
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To demonstrate this issue, we will focus on the sensitivity of WNB (Figure 8, bottom 

left). The spatial distribution of the total effect index WNB map follows the distribution of its 

underlying landscape layer (Figure 4, middle). Specifically, values of high total effect sensitivity 

are encountered in locations that are characterized by a steep gradient in NB, that is, areas where 

a rapid change in NB value is observed, signifying edge effects.  Furthermore, when we compare 

the total effect SA maps of WNB and WLV (Figure 8) we can observe that areas of high 

sensitivity to WNB are also characterized by low sensitivity to WLV (e.g. hot spots of WLV are 

cold spots of WNB). This is not surprising, given that the STk is a fraction of the total variance. 

Out of the seven factors, the E requires more explanation. As seen in Figure 8, a cluster 

of high values of E total effect sensitivity coincides with an area of the highest cumulative value 

of all three landscape attributes. This result suggests that, within the most competitive locations, 

where the utility of the developable parcel is high regardless of preferences, and where feedbacks 

(LVI, NBD, and N) only strengthen this relationship, it is the dual (push/pull) nature of E that 

drives agent’s decision to develop. This interesting observation may corroborate the conventional 

belief that LULC ABMs are complex models driven by interrelated and nonlinear forces.  

 

5.2 Why use spatially-explicit SA? 

Saltelli et al. (2004) list four major settings that justify the use of SA: factor prioritization, factor 

fixing, variance reduction, and factor mapping. Here, I restate these rationales in the context of 

LULC.  

Factor prioritization (FP) focuses on establishing which factors and in which locations 

generate most of the spatial output uncertainty. In the ABM example, the neighborhood effect 

proved to be the most influential in driving land use change. Its impact clustered around sites 
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with high overall utility. Since FP provides guidance for data acquisition, with the spatially-

explicit SA in the hypothetical problem, we could concentrate our data collection efforts around 

the area of the highest overall potential for development. In particular, we would survey the 

homebuyers in this area to find out if they seek solitude or want to live close to other residents. 

Factor fixing and model simplification is employed when, as a result of sensitivity analysis, we 

reduce the number of factors by fixing the non-influential ones to their best-fit values. In the 

context of LULC, if the sensitivities of a factor k are low and spatially independent we can, in 

principle, substitute k’s value with a constant. Variance reduction can be achieved when, after 

identifying input factors that drive model’s spatial uncertainty the most, we focus on better 

estimation of these factors in the preferred locations. Finally, in factor mapping, we utilize 

spatial SA as a tool for scenario generation and policy exploration, by concentrating on factors 

that are primarily responsible for producing desirable landscape configurations (Lempert et al., 

2003). 

 

6 Summary and Conclusions 

In this paper, I presented a spatially-explicit method of sensitivity analysis that aims at model’s 

outcome uncertainty decomposition. I used sensitivity maps of input factors as a means of model 

outcome evaluation. In the context of land use and land cover change, mapping the sensitivities 

of model input factors allows for identifying those model variables that truly contribute to output 

uncertainly in the areas of interest. Indeed, sensitivity maps provide a way to visualize the 

influence of a particular model factor on the simulated LULC maps. Without them, we would not 

be able to isolate the effects of a particular LULC driver within the area of interest. 
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The proposed SA framework was demonstrated using an agent-based model of residential 

development. The SA-maps were contrasted with SA-pies of spatially-inexplicit aggregate 

outcome pattern statistics. This comparative analysis showed that the maps and pies are 

complementary. The pies show factor sensitivities relative to each other but give little 

information on their spatial distributions. The maps do not provide a transparent view of the 

relative ‘between factor’ sensitivities but allow for spatial evaluation of the ‘within factor’ 

variability of sensitivities. Specifically, the SSA helps to uncover which inputs contribute to the 

formation of specific clusters of high development uncertainty. Based on the ABM example, I 

argue that complex LULC models exhibit nonlinear and spatially heterogeneous behavior. 

Therefore, modelers should be judicious when replacing outcome maps of such models with 

simpler scalar representations. 
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Table 1 Probability Density Functions (PDFs) for seven factors used in the computational 

experiment (U – uniform, DU – discrete uniform, 
*
 – factor group). Values for all factors are 

independently drawn from their respective distributions. NF is measured in raster cells. All other 

values are unitless. 

Factor PDF 

Land value weight 
*
 (WLV) U[0.0, 1.0] 

Natural beauty weight 
*
 (WNB) U[0.0, 1.0] 

Accessibility weight 
*
 (WAC) U[0.0, 1.0] 

Neighborhood effect 
*
(E) U[-1.0, 1.0] 

Natural beauty decrease (NBD) U[0.01, 0.1] 

Land value increase (LVI) U[0.01, 0.1] 

Size of neighborhood affected by feedbacks (N) DU{1,2,3,4} 
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Figure Captions 

 

 

Figure 1 Spatially-explicit uncertainty and sensitivity analysis. 

 

Figure 2 Example of deriving a sensitivity map (Fd – development frequency; E – excluded 

location; Sk – First order sensitivity index for factor k). 

 

Figure 3 Agent-based model used in this study. 

 

Figure 4 Spatial distributions of landscape characteristics at the beginning of the simulation. 

Darker shade indicates higher (and hence more preferred) locations. Raster maps are composed 

of 121x121 cells. 

 

Figure 5 Uncertainty analysis visualization: top – spatially-inexplicit, where development is 

summarized using area and eccentricity of the directional distribution statistics, bottom – 

spatially-explicit, where development is summarized using a frequency development map and a 

variant region (enclosed by a line).  

 

Figure 6 Sample ABM output realizations. The dots symbolize the centers of developed parcels. 

Eccentricity and Area refer to the standard deviational ellipses of the development depicted in 

the maps.  

 

Figure 7 Sensitivity pies of spatially aggregated outcome maps. 

 

Figure 8 Sensitivity maps of LULC outcome maps. 
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