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Abstract The paper presents a framework for sensitivity analysis (SA) in spatial multiple 

criteria evaluation (S-MCE). The framework focuses on three aspects of S-MCE: spatiality, 

scope, and cardinality. Spatiality stresses the importance of spatial criteria and spatial 

weights that should be explicitly considered in GIS-based MCE. Scope relates to the extent 

of SA, ranging from local one-at-a-time criterion examination to global testing of 

interdependencies among the multiple criteria model components. Cardinality addresses the 

duality of motivation for performing SA, namely, single-user learning and group consensus 

building. The framework organizes the existing SA techniques according to spatiality and 

scope and can be used as a conceptual guide in selecting SA techniques fitting a task at 

hand. 
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1 Introduction  

 

Spatial multiple criteria evaluation (S-MCE) belongs to one of the basic analytical methods 

of GIS (DiBiase et al. 2006). Over the last two decades, much work has gone into 

integrating MCE techniques with GIS to support formulation, modeling, and evaluation of 

spatial decision problems (Carver 1991; Jankowski 1995; Laaribi et al. 1996; Eastman 

1999; Malczewski 1999; Thill 1999; Malczewski 2006). S-MCE is a method supporting a 

rational decision process in which a set of geographical options is evaluated based on a 

number of decision criteria in search of the best choice (Malczewski 1999). Many 

applications of spatial decision support systems (SDSS), of which S-MCE is a part, suggest 

that S-MCE has become a well established procedure for solving spatial choice problems. 

However, S-MCE models have also been criticized for the inadequate treatment of 

uncertainty present in model outcomes. For example Uran and Janseen (2003), in their 

assessment of five SDSS models, identify the shortcomings of spatial post-processing 

analysis of option rankings generated with S-MCE. The uncertainty arises more often than 

not from the preliminary character of data and unstable human preferences. We may argue 

that the potential of using S-MCE lies in its exploratory approach to analyzing the decision 

problem (Malczewski 2006). Thus, ironically, the very essence of S-MCE might be at the 

same time its weakest point.  

 In this paper, we argue for strengthening the exploratory role of S-MCE by focusing 

on sensitivity analysis (SA) as part of the decision support methodology. In response to the 

lack of systematic treatment of SA in the S-MCE literature, we propose a framework for 

organizing and guiding the use of SA techniques. According to the framework, the 

objective of SA in S-MCE is to strengthen the confidence in the obtained solution or, in the 

case of weak confidence, help to redefine the set of acceptable alternative solutions. In the 

proposed framework, we extend SA beyond the criterion data uncertainty to account for the 

spatial characteristics of a geographic decision situation. 

 The roots of formal SA may be traced to engineering and scientific predictive 

modeling (French 1992; Pannell 1997; Gómez-Delgado and Tarantola 2006). Its role has 

been also recognized in decision sciences, where the main purpose of SA is strengthening 

the bases for a decision recommendation. In Simon’s decision process framework (1960) of 

intelligence-design-choice SA is perceived as the core of the final choice stage, where the 

decision maker evaluates and selects the desirable solution (Jankowski 1995; Malczewski 

1999; Feick and Hall 2004). Still, a comprehensive SA included in S-MCE models is more 

the exception than the norm (Delgado and Sendra 2004).   

 The importance of SA may be attributed to the complexity of decision processes 

dealing with spatial choice. Complex spatial problems involve irreducible (aleatory) 

uncertainty (Helton and Burmaster 1996) caused by the difficulty of arriving at a stable 

preference structure for decision makers. Aleatory uncertainty is a result of semi- or ill-

structured decision problems, where the decision makers are unable to define fully the 

problem (Densham 1991; Ascough et al. 2002; Malczewski 2006). A semi-structured 

decision problem may involve, for example, an incomplete or vague knowledge of decision 

option impacts, in which case SA could be used to examine the sensitivity of evaluation 

results derived from various plausible impact characteristics. 
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 The spatial nature of geographic problems amplifies the complexity of decision 

making through spatial interdependencies and spatio-temporal dynamics. Future impacts of 

proposed choices are often stochastic and deeply uncertain (Lempert 2002). The solutions 

to such problems should be thoroughly evaluated to ensure their robustness under a wide 

range of possible conditions (Malczewski 1999; Lempert et al. 2003). Unlike the optimal 

outcomes, which are based on normative computational tools, there is a need to look for 

robust solutions in the presence of a broad spectrum of beliefs and values and under 

varying future conditions. Robustness is defined here as the minimal response of a model 

solution caused by changing input conditions. In particular, robust S-MCE solutions are 

characterized by rank-order stability (Jankowski et al. 1997), where the prioritization of 

options is not significantly affected by minor changes in evaluation components 

(Andrienko and Andrienko 2005). 

 Traditionally, SA has been defined as the analysis of response of a model to 

changes in input parameters (Voogd 1983; Malczewski 1999; Krivoruchko and Gotway-

Crawford 2005; Longley et al. 2005). Usually, the general question asked in SA is: given 

the outcome, what is its sensitivity to changes in initial conditions? Therefore, in order to 

perform S-MCE SA, the decision maker must have a ranking of options already in hand. In 

this paper, we conceptualize SA more broadly. We define SA in S-MCE as a “thought 

experiment” (Alexander 1989: 323) or “computer-assisted reasoning” (Lempert 2002: 

7309) aimed at quantitative and qualitative assessment of the stability of a given option 

ranking. This definition is not restricted to the analysis of the stability of ranking given 

changes in input parameters. Such a strict definition is counter to the uncertain nature of 

spatial decision making. An overly structured SA does not fit into an often substantially 

unstructured spatial problem (Feick and Hall 2004). Hence, we should account for various 

other – intangible and qualitative – decision factors that may influence the choice. 

Furthermore, the spatially-explicit nature of geographical problems calls for new, spatially-

explicit methods of SA (Feick and Hall 2004). The ranking of alternatives should be 

analyzed based on both site-specific criterion outcomes and on spatial relations, such as 

proximity, contiguity, or clustering. 

 Finally, we should distinguish between sensitivity analysis and uncertainty analysis 

(UA). According to Saltelli et al. (2000) UA is forward-looking in nature. Therefore, 

performing UA, assumptions are mapped onto inferences (Saisana et al. 2005), whereas in 

SA a backward-looking or reverse analysis is undertaken. UA embraces multiple solutions 

and does not refer to any specific (initial) solution.  SA focuses on the robustness of a 

specific solution. This paper focuses on theoretical and methodological foundations of SA 

in S-MCE.  

 In the following section we present a framework for SA in S-MCE, followed by a 

review of SA methods. In the final section, we outline research challenges and recommend 

directions for further research on SA in S-MCE.  

 

2 A framework of sensitivity analysis in spatial multiple criteria evaluation 

 

The goal of the proposed framework is to provide an organizational outline of SA including 

many methods and multiple analysis pathways. We start from a three-dimensional 
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conceptualization of SA, followed by a methodology and a review of techniques that may 

be used to uphold the scope and spatiality perspectives.  

The following questions guided the formulation of the framework: 

1. Which elements of the decision process are the least informational and thus 

especially suited for identification in the course of SA? Are they spatially sensitive? 

What types of measures should be used to analyze the sensitivity of these decision 

components? 

2. What is the informational extent of SA? Does it embrace ‘the big picture of the 

decision problem’ or ‘a more focused exploration’? 

3. What is the motivation for performing SA? Is it individual knowledge discovery or 

group consensus building? 

To address these questions and to present the fabric of SA in S-MCE, we suggest a 3-

dimensional representation of SA, called the SA cube (Figure 1). 

 

 

Figure 1 Sensitivity analysis cube of spatial multiple criteria evaluation 

 

 

2.1 The SA Cube 

 

Each of the axes in Figure 1 represents one of the following characteristics of SA in S-

MCE: spatiality, scope, and cardinality. Spatiality stresses the importance of spatial criteria 

and spatial weights that should be explicitly considered in GIS-based MCE. Scope relates 

to the extent of SA ranging from local one-at-a-time criterion examination to global testing 

of interdependencies among the multiple criteria model components. Cardinality addresses 

the duality of motivation for performing SA, namely, single-user learning and group 

consensus building. 

2.1.1 Spatiality 

 

The spatiality axis comprises both the aspatial and spatial nature of the decision situation 

and falls under the rubric of technicality proposed by Belton and Stewart (2002). Based on 

the inventory by Delgado and Sendra (2004), the vast majority of the reported SA studies 

concern only the aspatial nature of the decision situation. Within this category of SA 

methods, the major factors analyzed relate to: the diversity of choice alternatives (option 

list), the choice of attributes (criteria), the stability of solution to changes in weights 

(weighting), and the uncertainty of evaluation method (e.g. standardization, weighting, and 

aggregation techniques). The majority of evaluation methods come from general decision 

theory and embrace spatial variability only implicitly. For instance, in the well-established 

GIS procedure of weighted overlay, the decision maker de facto performs traditional 

weighting by assigning the same importance value to every spatial unit of a given criterion 

layer (Lodwick et al. 1990; Lowry et al. 1995).   

 Only recently it has been recognized that a spatially explicit decision component 

may potentially influence the rank-order of alternatives (Herwijnen and Rietveld 1999; 

Feick and Hall 2004; Rinner and Heppleston 2006). Spatial SA involves the use of 
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topological and non-topological relations in S-MCE (Figure 2). For example, the analyst 

may use GIS to calculate distance between spatial decision alternatives and some attractor. 

The distance criterion can be further analyzed using traditional SA, for example, by 

changing its importance and recalculating the weighted option utility. However, given the 

spatial nature of the problem, the analyst should seek a more geographically oriented SA. 

Continuing the example, he/she may perform SA by varying the criterion importance over 

space and assigning different weights to different locations (Feick and Hall 2004). We call 

this spatial weighting (spatial bias) – “a non-uniform weighting of the spatial units” 

(Herwijnen and Rietveld 1999: 78), which is a way of articulating stakeholders’ sense of 

place. Each decision participant may have an individual spatial frame of reference like 

home, work, daily activity route, or other place of importance, which impacts the 

perception of the proposed courses of action. Note that this concept of spatial weight 

involves the perception (judgment) of criterion importance varying over geographical space 

and it is different from another concept of spatial weights that measure the level of 

interaction between features in geographical space (Getis and Aldstadt 2004).  

 A different type of problem arises from the spatial distribution of options and their 

criteria values. Following the above example, the analyst may be more interested in options 

that form a cluster because their proximity may reinforce positive or negative effects. Such 

spatial characteristics (contiguity, compactness, proximity etc.) are called spatial criteria 

(Brookes 1997; Malczewski 2006; Rinner and Heppleston 2006) and are derived from 

various spatial relations (Figure 2). Consequently, SA applied to spatial criteria does not 

involve subjective perception of place (spatial weighing), but rather the uncertainty of 

spatial distributions, interactions, impacts, and relationships, which can be studied by 

performing repetitive spatial transformations.  

 Consequently, unlike the geographical SA defined by Lodwick et al. (1990), we 

argue that spatially explicit SA pertains rather to relative location than to spatial 

coincidence of absolute location. Absolute location manifests itself in the traditional SA 

approach of weighted overlay, where the composite score of geographic option is derived 

by weighting and re-weighting criteria values at specific locations. Additionally, it involves 

the uncertainty of criteria evaluation scores measured at particular sites. Relative location 

refers to geographical variability, which manifests itself via situational relations (e.g. 

contiguity, compactness, proximity) representing spatial organization and spatial 

configuration in reference to a particular location (Couclelis 1991). Within the context of 

GIS, such spatially explicit SA complements traditional (aspatial) SA.  
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Figure 2 Spatial relations applicable to SA 

  

2.1.2 Scope  

 

Spatiality concerns the structure of the decision process and, in particular, the spatial 

component of this structure. However, if the objective is to understand the behavior of a 

selected subset of the criteria and their weights in the decision model (one, few, many, or 

all) then the scope of SA is more relevant.  

Scope may range from a detailed component-focused study to a generalized 

simultaneous testing of interdependencies among decision elements. Conventionally, the 

practice of S-MCE treats SA as a method of examining one specific component of S-MCE, 

where the analyst changes one parameter at a time and evaluates how sensitive the output is 

to the change (Malczewski 1999; Longley et al. 2005). Additionally, the analyst may vary 

multiple factors but within a small range around the favored values (Saltelli 2000). This 

type of SA is very interactive in nature and is termed local SA (Saltelli 2000). Conversely, 

if we perturbate one factor within its whole distribution or vary multiple factors 

simultaneously over the entire problem space, we perform global SA (Saltelli et al. 1999a). 

The latter is much more data intensive and therefore is usually done through a sampling-

based simulation (Saltelli 2000).  

The above local-global categorization of SA is specific to an aspatial analysis. The 

spatiality of geographic problems, however, puts the scope of SA in a different context.  

The division into local spatial SA and global spatial SA is similar to the local-global notion 

in spatial statistics. Specifically, spatial SA is defined as the examination of one or more 

spatial relations (Figure 2) within the extent of either the proximal (neighborhood) space or 

the whole space of the study area (Lodwick et al. 1990). For example, adjacency and 
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proximity are more neighborhood-related and should be used when dealing with local 

spatial associations. Conversely, the reference frame may span from a single location to the 

whole study area. The latter results in a constant spatial weight value, which is simply the 

traditional weighting in weighted overlay. 

 

2.1.3 Cardinality 

 

The third dimension of the cube, cardinality, reflects two potential motivations for SA, 

namely, 1) insight into individual’s values, and 2) learning about the group values. 

Cardinality follows the line of thought proposed by Belton and Stewart (2002), who 

divided SA into two distinct perspectives, namely single user and group. The single user 

perspective of SA deals with intuition and understanding. In this respect, we study the 

convergence or divergence of our favored options with the options suggested by the model 

(Belton and Stewart 2002). The user discovers his/her individual viewpoint of the decision 

problem. In the context of S-MCE, this may manifest itself in the individualistic spatial 

weighting. Group SA follows a different logic and is concerned more with the perspectives 

of others than with the individual perspective. Whereas single-user SA has its roots in 

operations research, the group SA is more related to collaborative learning. Given the 

value-laden nature of group decision making, group SA should incorporate analytic- 

deliberative functionality (Nyerges et al. 2006), to enhance place-based qualitative 

perceptions and consensus building among stakeholders (French 1992; Insua 1999; 

Andrienko et al. 2003). A possible quantitative application of group SA in S-MCE relates 

to the analysis of spatial equity (Talen 1998). 

 

3 Methods and measures of SA 

 

This section examines various methodological approaches to SA within the SA cube 

framework (Figure 1). Since none of the methods developed so far is all-inclusive, and 

since different methods of SA produce different outcomes, a good understanding of SA 

methodology and trade-offs involved in using different methods is needed in order to 

effectively apply SA (Alexander 1989; Saltelli 2000; Andrienko and Andrienko 2005). 

 

 

 

 

3.1 Traditional local and global SA methods  

 

Given an initial decision option prioritization, we may focus on analyzing the sensitivity of 

various components that contribute to computing the rank-order. Therefore, we divided the 

methods into four broad, partly overlapping categories of options, criteria, weights, and 

option scoring/ranking (Figure 3). 
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Figure 3 Aspatial SA methods and their scope 

 

The first group of methods concentrates on modifying the list of examined options. 

The analyst may delete some options which score low or are otherwise inferior or he/she 

may add back the previously deleted option. It is also possible to impose a constraint on a 

criterion value and thus modify the ranking by removing these options that do not meet the 

constraint (Andrienko et al. 2003).  

Similarly to adding/deleting options, we may modify the rank-order by deleting or 

adding a criterion. According to Alexander (1989) a criterion that changes the order of the 

best option (by being added or deleted) may be termed sensitive. We modify the list of 

criteria if they do not reflect our values and preferences (Voogd 1983). In weighted 

overlay, changing the attribute list is equivalent to map removal sensitivity (Lodwick et al. 

1990). Additionally, we might be uncertain about criteria evaluation scores (Voogd 1983). 

This problem is best addressed by using ranges/distribution of values rather than a specific 

value. With such constructed parameters, we may perform a Monte Carlo (MC) simulation 

of output variability due to the uncertainty of criteria scores (Saisana et al. 2005).  

Criterion uncertainty may also be related to a standardization method used to 

convert criteria to a common scale (Alexander 1989; Saisana et al. 2005) or the valuation 

of a criterion (Jankowski et al. 1997). For example, a person may choose to maximize the 

proximity to a proposed transportation improvement project since the project will benefit 

him/her by shortening his/her daily commute. Another person may deem such a proximity 

criterion as cost because it reduces public safety and hence, he/she wants to locate the 

projects elsewhere (minimize proximity). A novel method of determining the most critical 

decision criteria was proposed by Triantaphyllou (2000), where the criticality is defined by 

the minimum change in performance measures (evaluation scores) causing the rank 
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reversal for any two options. For the highly uncertain criteria it may also be useful to 

perform rescaling (Voogd 1983) from a higher to a lower measurement level, for example 

from ratio/interval to ordinal scale. The resultant decrease in accuracy may in fact better 

reflect the true reliability of data.  

 Weights have often been criticized as the subjective component of S-MCE and 

hence have been the focus of SA methods. The basic method of examining the sensitivity 

of weights relates systematic changes in weight values to changes in option ranking. 

Weighting plays a double role in S-MCE – it either represents a relative criterion 

importance or a substitution rate among criteria (Feick and Hall 2004). Due to the large 

number of explicit weighting methods that have been proposed (Malczewski 1999), the 

choice of weighting method can also be a subject of SA (Saisana et al. 2005). It is also 

possible to determine critical weights for these criteria for which a relatively small change 

in the weight value causes the rank reversal of any two options (Triantaphyllou 2000; 

Bojórquez-Tapia et al. 2005). Additionally, for one parameter at a time weight change 

analysis, there is a rule of thumb for establishing criterion criticality, which states that if the 

decision maker changes the parameter by n-percent and the result will change by less than 

n-percent then he/she may conclude that this parameter does not significantly influence the 

result (Longley et al. 2005).  

The methods so far discussed are mainly local in scope. A more complex approach 

to establishing the importance of criteria scores and weights involves global SA, which 

decomposes the variance of the output of the MCE process into a variety of explanatory 

factors. An example of a global SA method is the extended Fourier Amplitude Sensitivity 

Test (FAST). The extended FAST method uses first and total order indices as SA 

measures. The first order sensitivity index is defined as a fractional contribution to the 

variance of MCE model output (e.g. option ranking) due to the uncertainty of a given input 

parameter treated independently from other parameters (Saltelli et al. 1999a; Saltelli et al. 

1999b; Crosetto and Tarantola 2001; Gómez-Delgado and Tarantola 2006; Saisana et al. 

2005).  The total order index represents the overall contribution of a given parameter (e.g. 

criterion weight) including its interactions with other parameters. Computation of the 

indices requires a large number of rank-order calculations performed with weight vectors 

derived from the decision maker’s weight distribution functions (Saisana et al. 2005). 

 The key challenge for SA in S-MCE is to determine the stability of the rank-order 

of decision options. While all four groups of aspatial SA methods in Figure 3 can be used 

to determine the stability of rank-order, the option scoring and ranking methods address 

this task directly. Combining weighted multiple criteria values is inherently uncertain since 

none of the developed aggregation methods is flawless. Thus, SA may also comprise of 

comparing the stability of the rank-order under different aggregation methods (Massam 

1991; Laaribi et al. 1996).  

 Sometimes, highly ranked decision options are very close to each other in terms of 

their overall evaluation scores being very similar. Such a situation warrants a careful 

investigation of critical score difference (Figure 3). For these options, it may be interesting 

to discover what changes in weights make them score equally well, a procedure which 

Pannell (1997) calls the “break even value”. If the break even value is within an acceptable 

range, then we may justify the switch in rank and select an option which we value more 
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given other intangible criteria. The scale of the necessary weight modification may also 

provide information about options that are more likely to be ranked first – a method called 

proximity ranking (Wolters and Mareschal 1995).  

Insua and French (1991) proposed a more generic framework for SA scoring and 

ranking. According to their framework, we should first find the non-dominated alternatives, 

then narrow down the non-dominated set to those alternatives that are optimal, find the 

adjacent potentially optimal alternatives, and establish for them the least change in weights 

that is needed to switch the highest ranked option. Such analysis not only pinpoints the 

most efficient options and their competitors, but also provides information about the 

minimum tradeoffs between the options (French 1992). A more extensive SA of option 

scoring relies on the division of multidimensional space into subsections of weight value 

ranges where a selected favored alternative wins (Belton and Stewart 2002). These 

subsections are then called preference regions. Sampling-based MC simulation is another 

useful approach to assessing rank stability (Voogd 1983; Malczewski 1999; French and Xu 

2005; Longley et al. 2005). For example, for a large number of rank-orders from MC runs 

we can calculate different summary statistics like minimum, maximum, and mean position 

of the option thus revealing how stable the option rank is under changing parameter values 

(Andrienko and Andrienko 2005). 

 

3.2 Spatial SA methods 

 

Spatial SA is an underdeveloped component of SA in S-MCE. Studies that utilize spatially-

explicit SA are rare. Table 1 is a proposition of a GIS-based methodology that addresses 

spatially-explicit components of S-MCE problems. Based on these components, spatial SA 

methods are grouped into options, criteria, and weights-focused methods.  

The first group of spatial SA methods refers to geographical distributions of the 

decision options represented in Table 1 by four categories of relations: adjacency, 

proximity, pattern, and direction. For example, the decision maker may prefer to select 

high-ranked options because they are located in the direct proximity to other high-ranked 

options (Rinner and Heppleston 2006). Such spatial autocorrelation can lead to positive 

spatial externalities. Alternatively, the decision maker may use spatial statistics to analyze 

and map significant clusters of high scoring options. Other spatial SA operations, 

pertaining to spatial distribution of options, include map algebra, topology rules, or density 

analysis. Such operations can be used to derive geographically adjusted option evaluation 

scores (Rinner and Heppleston 2006). 

The sensitivity of decision criteria stems from the uncertainty of the evaluation 

scores (criteria values). In spatial decision situations, such sensitivity could be analyzed 

based on traditional value measurement uncertainty (error) or value assessment ambiguity, 

and spatial uncertainty stemming from the geographical distribution of a given criterion. 

For example, if the decision maker uses rainfall as a decision criterion in raster-based S-

MCE, he/she should consider the uncertainty of the rainfall measure at a particular 

location, together with the uncertainty associated with a selected interpolation method. One 

way of analyzing the spatial sensitivity of a criterion involves adding an uncertainty surface 

to the criterion surface. The uncertainty surface should be derived from a spatial 
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distribution of the criterion under consideration (Krivoruchko and Gotway-Crawford 

2005).  

Table 1 Methods supporting spatial SA 

S-MCE 

component 

Sensitivity Spatial 

Relation 

SA Procedure Exemplary Operations 

Options Spatial 
distribution of 
options (e.g. 

dispersed, 
clustered, 
contiguous) 

Adjacency Map options that are adjacent Topology Operations (Share a 
Line Segment) 
 

Proximity Locate proximate options Spatial Statistics (Measures of 
Centrality, Cluster Analysis) 
 
Distance Decay Functions 
 

Pattern Map the dispersion of options and 

the shape of option clusters 

Spatial Statistics (Mapping 

Clusters) 
 
Point/Line/Kernel Density 
 
Map Algebra (Neighborhood 
Operations) 
 

Direction Map the direction of options 
distribution 

Directional Distribution 
 
Directional Mean 
 

Criteria Spatial 
distribution of 
evaluation 
scores 

Pattern Modify the criterion layer with an 
uncertainty (‘noise’) random layer 
derived from a spatial distribution 
of the criterion 

Spatial Statistics (Cluster 
Analysis, Spatial Autocorrelation) 
 
Point/Line/Kernel Density 

 
Spatial Interpolation 
 

Use a more generalized criterion 
layer 

Map Algebra (Neighborhood 
Operations) 
 
Reclassify/Remap 

 
Aggregate 
  

Weights Reference 
frame (point, 
line or area of 
interest) and 

its spatial 
distribution 

Proximity Use different reference frames as 
spatial weight layers 
 
 

Straight Line Distance 
 
Distance Decay Functions 
 

Spatial Statistics (Standard 
Distance, Standard Deviational 
Ellipse) 
 

Containment Variable-size Buffer 
 
Overlay (Point on Polygon, Line 

on Polygon, Polygon on Polygon) 
 
Map Algebra (Boolean 
Operations, Zonal Operations) 
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Another method of analyzing criterion spatial sensitivity involves attribute 

generalization (Krivoruchko and Gotway-Crawford 2005), similar to the more traditional 

rescaling proposed by Voogd (1983). 

Spatial weight sensitivity pertains to the subjective reference frame of the decision 

maker. Participants may perceive certain locations as more favorable from a given 

perspective.  For example, they may conceive the rainfall criterion as being more important 

in rural areas than elsewhere. Consequently, spatial sensitivity of criteria weights may have 

a direct effect on option scoring and ranking and should be explicitly addressed. Two 

spatial relations that capture the spatial sensitivity of criteria weights are the proximity of 

and the containment within the areas of interest (Table 1). The former can be applied using 

different distance-decay functions (Rinner and Heppleston 2006) or modeling situation 

factors (Cromley and Huffman 2006). The latter can be implemented by a variable-size 

buffer analysis (Halls 2002; Tarantola et al. 2002; Krivoruchko and Gotway-Crawford 

2005).  

 

3.3 Methods supporting group SA  

 

The SA methods discussed above support the dynamics of group SA only implicitly. When 

used in a collaborative setting, the results of individual SA must be aggregated by some 

means. Jankowski et al. (1997) and Feick and Hall (2004) present consensus maps that 

show the dispersion of summarized votes using graduated circles or colors. The votes relate 

to a number of decision elements like option scores, criteria weights or criteria selection. 

Borda or Copeland voting protocols are used to aggregate the votes. Additionally, the 

variance of voting results can be displayed to identify the most contentious issues that need 

further discussion. These analytical techniques rely solely on non-spatial social voting 

functions. Spatially-explicit and scope-variant group SA remains to be explored in future 

research.  

 

4 Discussion and challenges 

 

Like any method of S-MCE, SA should embody a range of techniques that fit multiple 

styles of decision making (Merkhofer 1998; Andrienko et al. 2003; French and Xu 2005) 

and, thus, the need for appropriate SA methods is self-evident. Many well-developed 

techniques for SA in S-MCE exist; however, each of them has limitations.  

The aspatial methods of SA have been used for years and there is an extensive 

record of SA applications. However, these methods ignore a geographic aspect of S-MCE 

expressed by the spatial variability of criteria values and weights. We have suggested that 

spatial variability and hence, the sensitivity of S-MCE solutions to criteria values and 

weights can be addressed by the analysis of spatial relations. The methodology of spatial 

SA is currently still in its infancy and lacks techniques for rank stability testing. 

Furthermore, not much is known on whether spatial SA can enhance group decision 

making (Feick and Hall 2004). 
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 Until recently, the majority of studies reported on local one parameter at a time SA 

techniques. Local SA proved to be useful for human-mediated dynamic testing of rank-

order stability. Yet, local SA makes sense only if we deal with perfectly linear models 

(Saltelli et al. 1999b), which is unlikely in the majority of spatial decision problems. The 

most appropriate technique for non-linear processes is the model-independent variance-

based global SA (Saisana et al. 2005). Also, due to its theoretical underpinnings, global SA 

constitutes an important advance over the local SA methods.  

 It is also worth noting the role of qualitative group SA, in which the stakeholders 

negotiate using in-depth descriptive information that may reinforce or change their initial 

selection. Although only mentioned in this paper, such soft SA presents an intriguing area 

for future research and has the potential to bridge quantitative and qualitative approaches in 

decision making (Lempert 2002).  

 

4.1 Visual representations of SA 

 

SA is a useful approach to explore spatial decision options, but its utility can be further 

enhanced by the use of a cognitively straightforward visual feedback to decision makers. In 

this respect, the greatest progress has been made in the techniques of traditional local SA. 

The developments have been based on the principles of human-computer interaction and 

include user-friendly interfaces, computationally efficient algorithms, data brushing and 

dynamic linking between the maps, tables, and graphs. A variety of  tools are available in 

today’s software including weight sliders (Jankowski et al. 2001; Andrienko and 

Andrienko 2005), value path plots (Pannell 1997; Belton and Stewart 2002; Andrienko et 

al. 2003), spider-web charts (Pannell 1997), appraisal roses (Voogd 1983), or pie and bar 

chart histograms (Chen et al. 2001). More complex display methods have been proposed to 

account for the interrelated multidimensional nature of a decision problem. Examples 

include graphs of time-variant decomposition (Saltelli et al. 1999b), decision maps 

(Jankowski et al. 1999), and policy landscapes combined with policy regions (Bankes 

2002).  

 A future research challenge for visual representations concerns effective techniques 

of representing the sensitivity of S-MCE solutions at spatial locations. The exemplary 

cartographic representations of SA in the form of rank maps, rank stability maps, or utility 

symbol maps should be enhanced with more specific sensitivity maps.   

 

4.2 Representational and computational issues 

 

Krivoruchko and Gotway-Crawford (2005) notice that the results of uncertainty and SA 

may be numerous and call for creative summary tools. Standards for defining statistical 

descriptors and improvements in computational techniques bode well for enhancing the 

ease of use and comprehensiveness of SA (Feick and Hall 2004). An exemplary possibility 

is the dynamic visualization of global SA in the form of a pre-computed approximation of a 

solution hypercube, which is dynamically sliceable depending on the specified parameter 

set. SA creates new information about the decision process (Pannell 1997) and, within GIS, 

this emergent information can be introduced in the form of maps (Jankowski et al. 1999). 
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Another important issue to be considered relates to the spatial and aspatial scales of data 

granularity, representative to a specific decision situation. A possible solution may involve 

a nondeterministic fuzzy approach to SA in S-MCE (Eastman 1999).  

 

5 Conclusions 

 

This article began with declaring SA as the simultaneous advantage and shortcoming of S-

MCE. In the course of the article, we presented a framework for a holistic SA within the 

context of S-MCE. The goal of this framework is to assist the decision makers with the 

selection of SA methods and techniques that are appropriate for a specific decision 

situation. We formalized the structure of SA into spatiality, scope, and cardinality. The first 

dimension recognizes the duality of the spatial and aspatial nature of geographic decision 

making. The second dimension relates to analytical methods ranging from the low level 

exploration of a single decision parameter to the global synthesis of decision situation 

sensitivities. The final dimension reflects the divergent motivation for performing SA, 

namely individual learning or group consensus building.  

We also discussed a number of SA techniques, delineating the advantages and 

disadvantages associated with parametric and nonparametric (judgmental) uncertainty. 

While the spatiality of alternatives is widely recognized, little progress has been made on 

including spatial aspects of decision criteria and decision weights into MCE-based SA. 

Therefore, the development of spatially explicit techniques of SA deserves further research. 

Additionally, the SA cube framework points to the lack of both spatial and aspatial scope-

variant group SA methods, which are especially needed to enhance collaborative decision 

making. 

 SA is not a substitute for decision making analysis.  Instead, it is a way of making 

the participants of the decision processes aware of the uncertainties inherent in any 

decision situation. Unlike a ‘typical’ perception of scientific analysis, in which we put 

probably too much trust in precise (but not necessarily accurate) results, SA emphasizes the 

impossibility of providing an ‘always-best’ solution (Saltelli et al. 2004). Ascough et al. 

(2002) state that multicriteria SDSS should be an environment where decision makers can 

define, explore, redefine and understand the problems they deal with. To accomplish this 

goal, we need more research into the methods of spatial SA. The SA framework presented 

here is intended to be a step in building the foundation for further progress in spatial 

decision support. 
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