Numerical Modeling of Atmospheric Processes Associated with Wildland Fires

Mike Kiefer Research Associate

Part I

The Dynamics of Fire-Generated Dry Convection: Fundamental Processes and Complicating Factors

PhD Dissertation Graduated North Carolina State University Aug 2009 Advisor: Dr. Matt Parker

Motivation

The fundamental processes that yield different types of fire-generated convection are not well understood.

From Rothermel (1991)

Experiment Design

- Advanced Regional Prediction System (ARPS), ver. 5.1.0
- 2D and 3D idealized simulations
- Flat terrain
- Fire parameterized by steady heat flux into lowest model level (D = 520 m, Qo = 28.8 kW/m²).

2D Experiment Design

	Us	0	1.25	2.5	3.75	6.25	7.5	8.75	10.0	12.5
Ū	AB	∞	3.4	1.7	1.1	0.7	0.6	0.5	0.4	0.3
0	0	A1B9	<u>A1B8</u>	<u>A1B7</u>	<u>A1B6</u>	<u>A1B5</u>	<u>A1B4</u>	<u>A1B3</u>	<u>A1B2</u>	<u>A1B1</u>
2.5	0.3	A2B9	<u>A2B8</u>	A2B7	<u>A2B6</u>	<u>A2B5</u>	<u>A2B4</u>	<u>A2B3</u>	A2B2	<u>A2B1</u>
3.75	0.6	A3B9	A3B8	<u>A3B7</u>	A3B6	<u>A3B5</u>	<u>A3B4</u>	<u>A3B3</u>	<u>A3B2</u>	<u>A3B1</u>
6.25	1.7	A4B9	A4B8	A4B7	- <u>A4B6S</u> A4B6	A4B5S A4B5	A4B4	A4B3	A4B2	A4B1
10	4.3	(A5B9)	A5B8	<u>A5B7</u>	A5B6	A5B5	A5B4	A5B3	A5B2	A5B1
12.5	6.8	A6B9	A6B8	A6B7	A6B6	A6B5	A6B4	A6B5	A6B2	A6B1

From Kiefer et al. (2009), J. Atmos Sci., Vol 66, 806-836.

From Kiefer et al. (2009), J. Atmos Sci., Vol 66, 806-836.

From Kiefer et al. (2010), J. Atmos Sci., Vol 67, 611-632.

3D - Fireline Experiment Design

Surface Kinematic Heat Flux (K m/s)

From Kiefer et al. (2010), J. Atmos Sci., Vol 67, 611-632.

3D Shape/Inhomogeneity Assessment

Part II Development of Modeling I Dools for Predicting Smoke Dispersion from Low Dispersion from Low

JFSP project 09-1-04-1 PI: Warren Heilman Co-Pi: Jay Charney, Sharon Zhong, John Hom

Strategy

- Incorporate canopy parameterization into ARPS model
- Parameterize heat from fire (1-way interaction)
- Test out modeling strategy on test case: Double Trouble State Park Wildfire (2 June 2002)
- Run simulation of prescribed burn in Silas Little Experimental Forest (planned Feb-Mar 2011)
- Ultimately: Pass meteorological fields to smoke dispersion model (Flexpart)

Canopy Parameterization: Dupont and Brunet (2008) (J. Agr. Forest Met., V148, 976-990) Momentum Equation

$$\overline{\rho} \left(\frac{\partial \widetilde{u_i}}{\partial t} + \widetilde{u_j} \frac{\partial \widetilde{u_i}}{\partial x_j} \right) = -\frac{\partial}{\partial x_i} \left(\widetilde{p}'' - \alpha_{div} \frac{\partial \overline{\rho} \widetilde{u_j}}{\partial x_j} \right) - 2\overline{\rho} \omega_j \epsilon_{ijk} (\widetilde{u_k} - \overline{u_k}) \\ - \overline{\rho} g \left(\frac{\widetilde{\theta}''}{\overline{\theta}} - \frac{c_p}{c_v} \frac{\widetilde{p}''}{\overline{p}} \right) \delta_{i3} - \overline{\rho} \frac{\partial \tau_{ij}}{\partial x_j} - C_d A_f \sqrt{\widetilde{u_j} \widetilde{u_j}} \widetilde{u_i} \\ \text{BUOY} \qquad \text{MIXING} \qquad \begin{array}{c} \text{Pressure} \\ \text{Orag Force} \\ \text{Term (sink)} \end{array}$$

$$\frac{\text{SGS TKE Equation}}{\frac{\partial e}{\partial t} + \tilde{u_j} \frac{\partial e}{\partial x_j}} = -\tau_{ij} \frac{\partial \tilde{u_i}}{\partial x_j} - \frac{g}{\overline{\theta}} \tau_{3\theta} + \frac{\partial}{\partial x_j} \left(2\nu_t \frac{\partial e}{\partial x_j} \right) - C_\epsilon \frac{e^{3/2}}{l} - 2C_d A_f \sqrt{\tilde{u_j}\tilde{u_j}e}$$

$$\frac{\text{SHEAR}}{\text{SOURCE}} \underset{\text{SOURCE}}{\text{SOURCE}} \underset{\text{TRANSPORT}}{\text{TRANSPORT}} \qquad \begin{array}{c} \text{Cascade Term} \\ \text{(sink)} \end{array}$$

Resolution Sensitivity?

u/uref (t=40-70 min mean)

From Dupont and Brunet (2009, JFM)

Resolution Sensitivity?

From Dupont and Brunet (2009, JFM)

ARPS Nesting Strategy

Double Trouble Soundings – innermost nest

1700 UTC 2 June 2002

Issues Addressed

- Regardless of canopy presence or absence, surface temperatures too high
 - Easy fix use option in ARPS to distribute fluxes quadratically (i.e., smooth the scalar flux profiles)
- Inclusion of canopy exacerbates problem
 TKE term
 - □ Shading effect

TKE

TKE

Double Trouble Soundings – innermost nest

With canopy – Bad TKE code

With canopy – Good TKE code

Max T: 36.38 C

Max T: 39.98 C

Include effect of canopy shading

With canopy – Good TKE code

Quadratic Vertical Flux Distrib., and prescribed heat flux profile

Shaw and Schumann (1992), Brown and Covey (1966) $Q(z) = Q(h) \exp(-\alpha F), \quad F = \int_{-\pi}^{\pi} a \, \mathrm{d}z$ Q(h) = prescribed heatflux at top of canopy F = downward cumulativeLAI a = frontal area density of vegetation $\alpha = \text{extinction coeff.} = 0.6$

Idealized fire (800 W/m²) imposed

prescribed heat flux as in Sun et al. (2006) (Can. J. For. Res., V 36, 2894-2908)

Released at 18 UTC 2 June 2002

Parcel Trajectories

Ongoing Efforts

Double Trouble simulation analysis

- Plume height vs. fire intensity
- □ Air parcel trajectories
- How does fire impact exchange of air through canopy interface?

Idealized simulations

- Improve understanding of sensitivity of vertical exchange to various parameters
 - Fire intensity, canopy height, background wind & stability, etc.

Contact: mtkiefer@msu.edu