

Application of a Vegetation Canopy Parameterization to Wildland Fire Modeling

Michael T. Kiefer*, Sharon Zhong*, Warren E. Heilman@, Joseph J. Charney@, Xindi Bian@, and Ryan P. Shadbolt*

* Michigan State University, Department of Geography, East Lansing, MI @ USDA Forest Service, Northern Research Station, East Lansing, MI

Motivation

- Smoke dispersion from wildland fires is a critical health and safety issue
- Over past 10-20 years, focus on prediction has been on smoke dispersion from intense fires
- Ability of current smoke dispersion modeling systems (e.g., Bluesky) to handle local dispersion (i.e., 1-2km away) from lowintensity burns is poor

Modeling of Smoke Dispersion from Low-Intensity Fires

- Particularly challenging due to the effect on dispersion of critical factors such as
 - near-surface meteorological conditions
 - local topography
 - vegetation
 - atmospheric turbulence within and above vegetation layers
- Important: Exchange of particles through vegetation canopy

Overall Modeling Strategy

- Obtain fine-scale atmospheric dispersion modeling systems
 - Weather Modules: Advanced Regional Prediction
 System (ARPS), WRF, RAFLES
 - Dispersion Module: Flexpart
- Evaluate performance of models with existing datasets & recent burn data
 - e.g. Silas Little Experimental Forest: Feb/Mar 2011
- ARPS: examine sensitivity of flow in and above canopy to low-intensity fire

Modifications to ARPS

- Canopy parameterization
 - Neutral BL (Dupont and Brunet 2008,2009)
 - Momentum Equation: Pressure and Viscous Drag force term: $-C_d A_f \sqrt{u_j u_j} u_j$
 - TKE Equation: Wake energy cascade term: $-2C_dA_f\sqrt{u_ju_j}e$
 - Modification for Convective BL (Shaw and Schumann 1992) downward decaying vertical heat flux: $Q(z) = Q(h) \exp(-\alpha F), F = \int_{1}^{h} A_f dz$ $\alpha \approx 0.6$

Modifications to ARPS

- Fire parameterization
 - Prescribe surface heat flux fixed in space & time
 - Kiefer et al. (2009)
 - Account for attenuation of thermal radiation from fire by soot
 - Sun et al. (2006): $I/Io = \exp(-KL)$ $K \approx .038$
 - Surface heat fluxes tested: 400, 600, 800, 1000 W
 m⁻²

ARPS Nesting Strategy

Test case: Double Trouble State Park wildfire 2 June 2002

Full case: Silas Little Experimental Forest burn Feb/Mar 2011

DT case: Plume Cross-Sections

Fire ignited in model at 1700 UTC 2 June 2002

18-m deep canopy

DT case: Plume in a Convective BL

37 m AGL

167 m AGL

DT case: Maximum Parcel Height

More sensitive to fire

More sensitive to release time

Summary

- ARPS modified to include canopy parameterization for convective BL
- ARPS fire parameterization improved
- Preliminary simulations of Double Trouble case reveal:
 - Low-intensity fire critical to vertical exchange of air parcels through canopy
 - Buoyant plume from fire may interact with multiple scales of convective roll in boundary layer

Ongoing Efforts

- Run numerical simulations of low-intensity burn cases
 - ARPS, WRF, RAFLES
- Pass meteorological fields to dispersion module
- Evaluate performance of models against available datasets
- ARPS: examine sensitivity of flow in and above canopy to low-intensity fire

Acknowledgements

- Joint Fire Science Plan (Project 09-1-04-1)
- John Hom, Nick Skowronski, Ken Clark, Mike Gallagher, New Jersey Forest Fire Service
- CAPS, OU (ARPS model)

http://www.geo.msu.edu/firesmoke

